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(R.T)

Cchem (800K)

� First wall erosion needs                                                                        
to be very small (Reactor                                                        
operation 24/7 requires                                                                
high-Z wall)

� W can handle high heat                                                                 
fluxes (metal with highest                                                          
melting point)

� Fuel retention in W is small                                            
(Co-deposition is no issue)

⇒ W is a plasma impurity  
⇒ Radiative Cooling due to W demands caution
⇒ Diagnostic of W-density important 

Why is Tungsten of Interest for Fusion Science?
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Why is tungsten of Interest for Fusion Science?

Since 2007:       
All W-wall

Since 2011:               
W-divertor

ASDEX Upgrade, Garching

ITER-like Wall

at JET (Abingdon, UK)
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Why is tungsten of Interest for Fusion Plasmas?

Since 2007:       
All W-wall

Since 2011:               
W-divertor

ASDEX Upgrade, Garching

ITER-like Wall

at JET (Abingdon, UK)

ITER ~2019

Cadarache, F

W-divertor
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Setup of Spectroscopic Diagnostics
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Setup of Spectroscopic Diagnostics

Fractional abundances

0.1

0.01



T. Pütterich, DPG 2012, Stuttgart, P26.2   - 9

Setup of Spectroscopic Diagnostics

Modelled ITER-spectrum Fractional abundances

0.1

0.01



For ionisation equilibrium
solve:

weak influence of 
plasma transport on 
Frac.abundances

typical radial plasma profiles in AUG

ionisation shells with (colored) /
without (black) transport

Transport Does not Change Frac. Abundance!
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=> Ionization 
equilibrium is f(Te)
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Ionization Equilibrium of W is Complicated

� Many Ions Co-exist
� Ionization-Recombination rates of all ions need to be known
� BUT: Very Detailed Information May be Obtained!

� (Pütterich et.al. PPCF 2008)
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W Spectroscopy in the VUV and SXR

W-accumulation is emphasizing Central Plasma Region

• W can accumulate in plasma centre due to ‚neoclassical‘ transport
• central concentration can be increased by up 100 times
• radiation originates from very

small volume / radial range
⇒ dominated by very few 

ionisation states
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Ionization Equilibrium is Probed very 

Accurately by Spectroscopic Measurement

Deduced fractional 
abundance versus 
temperature
different discharges: 
symbols
different spectral lines: 
colours

Use of CADW 
ionisation rates
(S.D. Loch, PRA 2005)
and adjustment of 
recombination rates
allows good de-
scription of emissions 
of W24+ - W48+

T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 14Pütterich et. al., PPCF50, 085016 (2008)
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Which Spectral Regions are Interesting?
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Range A: X-ray Core of AUG, Edge of ITER

� Spectral lines (Te~2.0-6.0keV)

� W39+-W49+

� Advantages of X-ray 
spectroscopy

� Accessible with soft X-ray 
cameras

� ‚mystery line‘ at 0.793nm,     
with strongest discrepancy
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Range B, special plasmas in AUG, core in ITER

� Observation of spectral lines of >W60+ in ASDEX Upgrade 
� Special Discharge with Te~18keV

10Å 5Å 1.5Å 1Å

EBIT λλλλ-range

X-ray overview ASDEX Upgrade @Te~18keV

(pulse height analysis)
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atomic structure 
calculations
Cowan-code , 
GRASP + ADAS

Range B, special plasmas in AUG, core in ITER

Charge state distribution
from Radiative 
Recombination spectrum

Electron-Beam Ion-Traps: Prepare W-ions with charge >60+ 
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QC: VUV Edge+Core in AUG, Edge in ITER

� Spectral feature (Te ~ 0.8-1.8keV): ‚Quasicontinuum‘  
� Spectral lines: Te~2.0-4.5keV
� Covers Ionization Stages from ~W24+-W45+



T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 24

5nm: Main Peak is Understood, 

What about the Neighboring Peak at 6nm?

Comparison with 
EBIT investigations

• EBIT spectra give nice 
identification of main peak at 
5nm, consistently with 
tokamak spectra

• Emissions of Neighboring
6nm-Peak not Clear

• Electron density effect?
EBIT dens. << tokamak dens.

T. Pütterich et al., J. Phys. B 38 (2005) 
3071



VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements

T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 30

3 4 5 6 7

Pb, Z=82

λ [nm]

Modell/2

T              = 2.7keVe,center

Measurement

In
te

ns
ity

 [
a.

u.
]



VUV Spectra of Various High-Z Elements
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VUV Spectra of Various High-Z Elements
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=> Little Peak requires Larger Insight



4f-feature – computational demanding

� W-emissions below 1keV 
from ions below W28+

� Open 4f-shell, very 
demanding
�4d104fn => 4d94fn+1

� need more configurations, 
because of severe 
configuration 
mixing/interaction

� millions of transitions

T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 33
10 λ[nm] 3020

PhD thesis, ASDEX Upgrade
A. Janzer

~200eV

~400eV

~500eV

~800eV



FAC Calculation for W23+

� ~12000 levels
� ~26Mio transitions

� All the configurations 
influence the modelled 
spectrum! 
Configuration Mixing 
important!

� W20+ and W21+ even 
more complex

� Need all ions to model 
tokamak spectrum



FAC Calculation for W23+

� W23+ - calculation exhibits emission close to 6nm
� Corresponding transitions in W27+-W35+? 

FPEC  for T_e =    400.0 eV , n_e = 5.0e+19 m^-3
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Summary & Outlook

� W-content in fusion plasma must be controled
�W-spectroscopy is crucial

� Ionization Equilibrium – tokamaks provide detailed information!
�Transport not important/ Special plasmas allow quasi-local measurem.

� For X-ray and soft X-ray range (W40+ - W70+): 
�spectra exhibit separate lines

� VUV to EUV range (W14+ - W45+) 
�quasicontinua exist – modelling of quasicontinua require huge structure

models (configuration mixing and interaction)
�all further calculations computational demaning

� Outlook: W requires 2D diagnosis (=> cameras integrating spectra)

T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 36



Range A: X-ray Core of AUG, Edge of ITER

� Spectral lines (Te~2.0-6.0keV)

� W39+-W49+

� Advantages of X-ray 
spectroscopy

� Partly accessible with           
soft X-ray cameras

� ‚miracle line‘ at 0.793nm,     
with strongest discrepancy
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Blocked
by 
250micron 
Be-filter



2D deconvolution of integrated SXR-radiation

� Soft X-ray region is used to 
investigate 2D structure

� Quantitative comparison of 
spectrometer and cameras

� Integrated SXR-cameras do 
not give direct information on 
radiator 

T. Pütterich, ICAMDATA-8 2012, NIST, Gaithersburg, MD - 39
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